
Bien commencer avec HashcatBien commencer avec Hashcat

Hashcat est un outil de décryptage de mots de passe utilisant la technique dite de force brute. C'est à
dire consistant à essayer toutes les combinaisons possibles jusqu'à trouver la bonne.

Voici un document explicatif de comment l'utiliser :

Préparation

Avant de commencer, il est nécessaire de connaître avec quel algorithme est haché le mot de passe en
votre possession (c'est à dire pouvoir déterminer si on est en présence d'un hachage MD5, SHA-256,
etc.)

Si celui-ci vous est inconnu, vous pouvez utiliser un outil comme Hash-Identifier (inclus dans Kali Linux)
pour vous aider.

Dans la suite du document, nous admettrons que votre mot de passe haché est stocké bien au chaud
dans le fichier hash.txt

L’attaque par dictionnaire ⓘ

Quand on parle de casser des mots de passe, il nous vient souvent à l'esprit d'essayer les combinaisons
les plus populaires comme 12345, azerty ou encore choucrouteLPB.

Ce type d'attaque se nomme attaque par dictionnaire, et vous demande de ce fait de vous munir d'un
fichier dictionnaire.

Les plus populaires sont rockyou.txt ou encore SecLists. Sous Kali Linux, vous en avez quelques uns à
disposition dans le dossier /usr/share/wordlists.

Pour lancer une attaque par dictionnaire avec Hashcat, utilisez la commande ci-dessous complétée
avec le hash-code correspondant à votre situation :

Tableau des codes correspondant aux algorithmes de hachage populaires :

Algorithme de hachage du mot de passe Code à utiliser après -m

MD5 0

SHA-1 100

SHA-256 1400

SHA-512 1700

GPG (AES-128/AES-256 × SHA-1) 17010

7-Zip 11600

PDF 1.7 Level 8 (Acrobat 10 - 11) 10700

Note : Vous pouvez toujours afficher la liste complète des algorithmes supportés et leur code avec la commande hashcat -h, section [Hash modes]

 $ hashcat -m 100 -a 0 hash.txt dic.txt

Type d’attaque

0 = Attaque par
dictionnaire standard

Algorithme de hachage

Voir le tableau plus bas
Fichier contenant
le hash

Dictionnaire à
utiliser

https://github.com/blackploit/hash-identifier
https://github.com/danielmiessler/SecLists
https://github.com/ohmybahgosh/RockYou2021.txt
https://hashcat.net/wiki/doku.php?id=dictionary_attack

L'attaque par combinaison ⓘ

Dans la continuité de la première, cette seconde attaque va consister à non pas essayer chaque mot du
dictionnaire un par un, mais les combiner deux par deux, puis trois par trois, etc.

Nous aurons donc besoin de fournir à l’outil non pas un, mais deux dictionnaires. Notez qu’il est
parfaitement possible de lui fournir deux fois le même.

Pour lancer une attaque par combinaison avec Hashcat, utilisez la commande ci-dessous complétée
avec le hash-code correspondant à votre situation (référez-vous au tableau vu plus haut ou avec l’aide
de hashcat) :

L'attaque par masque ⓘ

Beaucoup d’utilisateurs construisent leurs mots de passe en suivant une structure assez récurrente, et
c’est sur cette faiblesse humaine que nous allons nous attarder avec l’attaque par masque.

De nombreux paramètres sont disponibles pour ce type d’attaque, permettant de réduire le nombre de
tentatives avant la découverte dudit mot de passe. Voici les principaux :

Argument Signification

-m Code de l’algorithme de hachage (comme vu précédemment)

-a 3 Type d’attaque : 3 = Attaque par masque

-i Augmenter progressivement la longueur des mots de passe essayés

–increment-min Longueur minimale du mot de passe

–increment-max Longueur maximale du mot de passe

-1 (avec le chiffre 1) Jeu de caractères personnalisé n°1 (possible d’en fournir un 2e avec -2, etc.)

Les masques de caractères disponibles sont les suivants :

Masque Jeu de caractères correspondant

?l abcdefghijklmnopqrstuvwxyz

?u ABCDEFGHIJKLMNOPQRSTUVWXYZ

?d 0123456789

?h 0123456789abcdef

?H 0123456789ABCDEF

?s !”#$%&'()*+,-./:;<=>?@[\]^_{̀|}~ ␣ (représente l’espace)␣
?a Équivalent à ?l + ?u + ?d + ?s

?b L’ensemble des caractères Unicode de 0x00 à 0xff

azerty azerty (composez vos propres jeux de caractères de cette manière, sans le « ? » au début !)

 $ hashcat -m 100 -a 1 hash.txt dic1.txt dic2.txt

Type d’attaque

1 = Attaque par
combinaison

Algorithme de hachage

Voir le tableau plus haut
Fichier contenant
le hash

Dictionnaires à
utiliser

https://hashcat.net/wiki/doku.php?id=mask_attack
https://hashcat.net/wiki/doku.php?id=combinator_attack

Une attaque par masque se lance à l’aide d’une commande comme celle-ci :

Il est aussi possible d’offrir à Hashcat des indices sur la construction du mot de passe,
par exemple cette commande indique :

Remarques :

• Si l’on offre un masque de composition (dernier argument ci-dessus) à Hashcat, alors
--increment-max est inutile : il suffit de construire un masque de la longueur maximale à
fournir

• Vous pouvez inclure des caractères fixes (ceux que vous connaîtrez) dans le masque de
composition : par exemple, « ?1?1?2hello?2?2?2?2?s » va forcer le mot de passe
à travers ***hello*****.

• L’incrémentation d’un masque de composition se fera par lecture linéaire de gauche à droite
(d’après l’exemple ci-dessus, tout d’abord « ?1 », puis « ?1?1 », puis « ?1?1?2 », etc.)

• Dans certains cas, les « ? » utilisés dans les commandes sont interprétés par le shell lui-même.
Pensez donc à les isoler, soit entre guillemets ("?l?l?l?l?l"), soit en les échappant (\?l\?
l\?l)

L'attaque hybride (dictionnaire + masque) ⓘ

Une autre faiblesse des mots de passe humains est le fait qu’ils sont souvent composés de mots d’un
côté, et de nombres de l’autre. L’attaque hybride cherche tout simplement à tirer parti de deux des
attaques citées précédemment.

L’attaque hybride est composée ainsi :

Dans ce cas, les combinaisons testées iront de Motdebut0000 À Motfin9999.

 $ hashcat -m 100 -a 3 -i --increment-min 1 --increment-max 10 -1 ?l?d hash.txt

Type d’attaque

3 = Attaque par masque

Algorithme de hachage

Voir le tableau plus haut

Voir tableau des arguments
plus haut

Jeu de caractères n°1
(et celui utilisé) :

Lettres minuscules et chiffres

 $ hashcat -m 100 -a 3 -1 0134?u -2 ?l?d hash.txt ?1?1?2?2?2?2?2?s

2. Que l’on souhaite
faire une attaque par
masque

1. Que le code est haché en SHA-1
3. Que le jeu de caractères
n°1 est 01234 ainsi que tout

l’alphabet majuscule

4. Que le jeu de caractères
n°2 est tout l’alphabet

minuscule et les chiffres

5. Et enfin que le code à trouver est composé :

 - du jeu 1 sur les deux premiers caractères

 - du jeu 2 pour les 5 suivants

 - du jeu « ?s » (caractères spéciaux) pour le dernier

 $ hashcat -m 100 -a 6 hash.txt dict.txt ?d?d?d?d

Type d’attaque

6 = Attaque hybride dict + masque
7 = Attaque hybride masque + dict

Algorithme de hachage

Voir le tableau plus haut Dictionnaire Masque de composition

https://hashcat.net/wiki/doku.php?id=hybrid_attack

Dans l’autre sens, pour tester des combinaisons masque + dictionnaire, utilisez la syntaxe suivante :

Dans ce cas, les combinaisons testées iront de 0000Motdebut À 9999Motfin.

L’attaque par incrémentation (force vraiment brute) ⓘ

Si aucune des méthodes mentionnées ci-dessus n’a réussi à fonctionner, il y a alors l’ultime recours, la
force vraiment brute, l’attaque par incrémentation.

Pour ce type d’attaque, armez-vous de beaucoup de patience et éventuellement de processeurs et
cartes graphiques performantes, car ici, il n’est plus question d’essayer les combinaisons les plus
probables, mais de les essayer TOUTES !

Ce type d’attaque est tout simplement une variante de l’attaque par masque :

Comment lire le résultat de Hashcat ?

Voici une liste des informations les plus utiles à repérer :

Plus d’informations disponibles sur le site officiel du projet.

 $ hashcat -m 100 -a 7 hash.txt ?d?d?d?d dict.txt

 $ hashcat -m 100 -a 3 hash.txt ?a?a?a?a?a?a?a?a?a

Masque composé de « ?a », indiquant « n’importe quel caractère ».

Leur quantité définira la longueur max du mot de passe à forcer

9526ac6017e3fa93e0eda744a982bb56:Helloo!

Session........: hashcat
Status.........: Cracked
Hash.Type......: MD5
Hash.Target....: hash.txt
Time.Started...: Sun Jan 1 12:15:33 2023 (87 secs)
Time.Estimated.: Sun Jan 1 12:17:00 2023 (0 secs)
Guess.Base.....: File (dict.txt)
Guess.Mask.....: ?u?l?l?l?l?l?l?s
Guess.Queue....: 6/10 (62.83%)
Speed.#1.......: 4 MH/s (2.95ms) @ Accel:4 Loops:2 Thr:8 Vec:8
Recovered......: 1/1 (100.00%) Digests, 1/1 (100.00%) Salts
Progress.......: 716358653913/16783586539239 (27.68%)
Rejected.......: 0/16783586539239 (0.00%)
Restore.Point..: 423135865393/16783586539239 (12.54%)
Restore.Sub.#1.: Salt:0 Amplifier:19200-19264 Iteration:0-64
Candidates.#1..: Tapjcqs& -> Xfgjxfs_

1re ligne : Résultat trouvé (au format hash_initial:résultat)

Status : Exhausted => En cours | Cracked => Succès

Hash target : fichier source des hashs

Guess base : fichier de dictionnaire (si disponible)

Guess mask : masque de composition (si disponible)

Speed : vitesse de forçage en Hashs par seconde (H/s)

Recovered : nombre de mots de passe trouvés / total demandé

Rejected : Nombre de candidats rejetés à cause de limitations
matérielles ou logicielles.

Progress : Nombre de candidats essayés / total des possibilités

Restore point : progression du dernier point de restauration
(utile pour reprendre en cas de coupure)

Candidates : fourchette de candidats pour la vue actuelle
(par rapport à la dernière actualisation)

Conçu par Dorian Blanchet

https://hashcat.net/
https://hashcat.net/wiki/doku.php?id=brute_force_attack
https://github.com/DodoLeDev

