Bien commencer avec Hashcat

Hashcat est un outil de décryptage de mots de passe utilisant la technique dite de force brute. C'est a
dire consistant a essayer toutes les combinaisons possibles jusqu'a trouver la bonne.

Voici un document explicatif de comment l'utiliser :

Préparation

Avant de commencer, il est nécessaire de connaitre avec quel algorithme est haché le mot de passe en
votre possession (c'est a dire pouvoir déterminer si on est en présence d'un hachage MD5, SHA-256,
etc.)

Si celui-ci vous est inconnu, vous pouvez utiliser un outil comme Hash-ldentifier (inclus dans Kali Linux)
pour vous aider.

Dans la suite du document, nous admettrons que votre mot de passe haché est stocké bien au chaud
dans le fichier hash.txt

L’attaque par dictionnaire ©
Quand on parle de casser des mots de passe, il nous vient souvent a I'esprit d'essayer les combinaisons
les plus populaires comme 12345, azerty ou encore choucroutelPB.

Ce type d'attaque se nomme attaque par dictionnaire, et vous demande de ce fait de vous munir d'un
fichier dictionnaire.

Les plus populaires sont rockyou.txt ou encore Seclists. Sous Kali Linux, vous en avez quelques uns a
disposition dans le dossier /usr/share/wordlists.

Pour lancer une attaque par dictionnaire avec Hashcat, utilisez la commande ci-dessous complétée
avec le hash-code correspondant a votre situation :

hashcat -m 100 -a 0 hash.txt dic.txt

Algorithme de hachage Fichier contenant
Type d'attaque le hash

Dictionnaire &

utiliser

Voir le tableau plus bas
0 = Attaque par
dictionnaire standard

Tableau des codes correspondant aux algorithmes de hachage populaires :

Algorithme de hachage du mot de passe Code a utiliser aprés -m
MD5 0
SHA-T 100
SHA-256 1400
SHA-512 1700
GPG (AES-128/AES-256 x SHA-1) 17010
7-Zip 11600
PDF 1.7 Level 8 (Acrobat 10 - 11) 10700

Note : Vous pouvez toujours afficher la liste compléte des algorithmes supportés et leur code avec la commande hashcat -h, section [Hash modes]

https://github.com/blackploit/hash-identifier
https://github.com/danielmiessler/SecLists
https://github.com/ohmybahgosh/RockYou2021.txt
https://hashcat.net/wiki/doku.php?id=dictionary_attack

L'attaque par combinaison ©

Dans la continuité de la premiére, cette seconde attaque va consister a non pas essayer chaque mot du
dictionnaire un par un, mais les combiner deux par deux, puis trois par trois, etc.

Nous aurons donc besoin de fournir a I'outil non pas un, mais deux dictionnaires. Notez qu’'il est
parfaitement possible de lui fournir deux fois le méme.

Pour lancer une attaque par combinaison avec Hashcat, utilisez la commande ci-dessous complétée
avec le hash-code correspondant a votre situation (référez-vous au tableau vu plus haut ou avec 'aide
de hashcat) :

hashcat -m 100 -a 1 hash.txt dicl.txt dic2.txt

Algorithme de hachage Fichier contenant Dictionnaires a

Voir le tableau plus haut Type d'attaque le hash utiliser

1= Attaque par
combinaison

L'attaque par masque ©

Beaucoup d'utilisateurs construisent leurs mots de passe en suivant une structure assez récurrente, et
c’est sur cette faiblesse humaine que nous allons nous attarder avec I'attaque par masque.

De nombreux paramétres sont disponibles pour ce type d’attaque, permettant de réduire le nombre de
tentatives avant la découverte dudit mot de passe. Voici les principaux :

Argument Signification
-m Code de I'algorithme de hachage (comme vu précédemment)
-a 3 Type d'attaque : 3 = Attaque par masque
=i Augmenter progressivement la longueur des mots de passe essayés
—increment-min Longueur minimale du mot de passe
—-increment-max Longueur maximale du mot de passe
-1 (avec le chiffre 1) Jeu de caractéres personnalisé n°1 (possible d'en fournir un 2° avec -2, etc.)

Les masques de caractéres disponibles sont les suivants :

Masque Jeu de caractéres correspondant
21 abcdefghijklmnopgrstuvwxyz
u ABCDEFGHIJKLMNOPQRSTUVWXYZ
?2d 0123456789
?h 0123456789abcdef
7?H 0123456789ABCDEF
?s LHS%&)+, /<= 2@\ {1~
?a Equivalent 3 21+ 2u + ?2d + ?s
?b L'ensemble des caractéres Unicode de 0x00 & 0xff
azerty azerty

https://hashcat.net/wiki/doku.php?id=mask_attack
https://hashcat.net/wiki/doku.php?id=combinator_attack

Une attaque par masque se lance a l'aide d’'une commande comme celle-ci :

hashcat -m 100 -a 3 -7 —--increment-min 1 --increment-max 10 -1 ?1?d hash.txt
e Voir tableau des arguments
¢ plus haut $

Algorithme de hachage Jeu de caractéres n°1

Type d'attaque (et celui utilisé) :

Voir le tableau plus haut

3= Att) .
aque par masque Lettres minuscules et chiffres

Il est aussi possible d’offrir a Hashcat des indices sur la construction du mot de passe,
par exemple cette commande indique :

hashcat -m 160 -a 3 -1 0134?u -2 ?1?d hash.txt 27171722722?2?2?27s

4 T

3. Que le jeu de caractéres

1. Que le code est haché en SHA-1 n°1 est 81234 ainsi que tout 4. Que le jeu de caractéres 5. Et enfin que le code & trouver est composé :
2. Que |'on souhaite |'alphabet majuscule n'nz est tout I'alphe?bet - du jeu 1 sur les deux premiers caractéres
faire une attaque par minuscule et les chiffres

- du jeu 2 pour les 5 suivants
masque
- du jeu « ?s » (caractéres spéciaux) pour le dernier

Remarques:

* Si I'on offre un masque de composition (dernier argument ci-dessus) a Hashcat, alors
-—-increment-max est inutile : il suffit de construire un masque de la longueur maximale a
fournir

* Vous pouvez inclure des caractéres fixes (ceux que vous connaitrez) dans le masque de
composition: par exemple, « ?71?1?72hello?2?72?2?2?s» va forcer le mot de passe
a travers ***hello*****,

* L’incrémentation d’'un masque de composition se fera par lecture linéaire de gauche a droite
(d’aprés I'exemple ci-dessus, tout d’abord « 71 », puis « 21?1 », puis « 21?7172 », etc.)

» Dans certains cas, les « ? » utilisés dans les commandes sont interprétés par le shell lui-méme.
Pensez donc a les isoler, soit entre guillemets ("2121212121"), soit en les échappant (\?1\?
1\?1)

L'attaque hybride (dictionnaire + masque) ©

Une autre faiblesse des mots de passe humains est le fait qu’ils sont souvent composés de mots d’'un
coOté, et de nombres de l'autre. L’attaque hybride cherche tout simplement a tirer parti de deux des
attaques citées préecédemment.

L’attaque hybride est composée ainsi :

hashcat -m 100 -a 6 hash.txt dict.txt ?d?d?d?d

Algorithme de hachage

Voir le tableau plus haut Type d'attaque Dictionnaire Masque de composition

6 = Attaque hybride dict + masque
7 = Attaque hybride masque + dict

Dans ce cas, les combinaisons testées iront de Motdebut0000 A Motfin9999.

https://hashcat.net/wiki/doku.php?id=hybrid_attack

Dans I'autre sens, pour tester des combinaisons masque + dictionnaire, utilisez la syntaxe suivante :

hashcat -m 100 -a 7 hash.txt ?d?d?d?d dict.txt

Dans ce cas, les combinaisons testées iront de 0000Motdebut A 9999Motfin.

L’attaque par incrémentation (force vraiment brute) ©

Si aucune des méthodes mentionnées ci-dessus n’a réussi a fonctionner, il y a alors I'ultime recours, la
force vraiment brute, I'attaque par incrémentation.

Pour ce type d’attaque, armez-vous de beaucoup de patience et éventuellement de processeurs et
cartes graphiques performantes, car ici, il n'est plus question d’essayer les combinaisons les plus
probables, mais de les essayer TOUTES !

Ce type d’attaque est tout simplement une variante de I'attaque par masque :

hashcat -m 100 -a 3 hash.txt ?a?a?a?a?a?a?a?a?a

v

Masque composé de « ?a », indiquant « n'importe quel caractére ».

Leur quantité définira la longueur max du mot de passe a forcer

Comment lire le résultat de Hashcat ?

Voici une liste des informations les plus utiles a repérer :

1 ligne : Résultat trouvé (au format hash_initial:résultat)

9526ac6017e3fa93e0eda744a982bb56:Helloo! .
Status : Exhausted => En cours | Cracked => Succés
: hashcat
: Cracked
Hash.Type......: MD5 Guess base : fichier de dictionnaire (si disponible)
Hash.Target....: hash.txt . - .
Time.Started...: Sun Jan 1 12:15:33 2023 (87 secs) Guess mask : masque de composition (si disponible)
Time.Estimated.: Sun Jan 1 12:17:00 2023 (0 secs)
Guess.Base.....: File (dict.txt)
Guess.Mask. . 2u?2121212121217%s Recovered : nombre de mots de passe trouvés / total demandé
Guess.Queue....: 6/10 (62.83%) . . N .. .
Speed.#1.......: 4 MH/s (2.95ms) @ Accel:4 Loops:2 Thr:8 Vec:s Reje,ct.ed : Nombrg f:le candidats rejetés a cause de limitations
Recovered......: 1/1 (100.00%) Digests, 1/1 (100.00%) Salts matérielles ou logicielles.
Progress.......: 716358653913/16783586539239 (27.68%)
Rejected.......: 0/16783586539239 (0.00%)
Restore.Point..: 423135865393/16783586539239 (12.54%) Restore point : progression du dernier point de restauration
Restore.Sub.#1.: Salt:0 Amplifier:19200-19264 Iteration:0-64 .
Candidates.#1..: Tapjcqs —> Xfgixfe. (utile pour reprendre en cas de coupure)

Hash target : fichier source des hashs

Speed : vitesse de forcage en Hashs par seconde (H/s)

Progress : Nombre de candidats essayés / total des possibilités

Candidates : fourchette de candidats pour la vue actuelle
(par rapport a la derniére actualisation)

Plus d'informations disponibles sur le site officiel du projet.

Congu par Dorian Blanchet

https://hashcat.net/
https://hashcat.net/wiki/doku.php?id=brute_force_attack
https://github.com/DodoLeDev

